AI时代PYTHON金融大数据分析实战:CHATGPT让金融大数据分析插上翅膀
第1章ChatGPT在金融大数据分析中的作用1.1 ChatGPT生成金融数据分析代码示例的案例21.1.1 案例1:生成数据清洗和预处理代码示例21.1.2 案例2:生成特征工程代码示例31.2 ChatGPT回答金融领域知识的案例31.2.1 案例3:解答金融市场知识41.2.2 案例4:解释经济学理论41.2.3 案例5:解答金融产品相关问题51.2.4 案例6:解答金融风险管理相关问题51.3 ChatGPT辅助发现数据中的模式和特征61.4 本章总结6第2章金融大数据分析Python基础2.1 Python解释器82.2 IDE工具102.2.1 安装Jupyter Notebook102.2.2 启动Jupyter Notebook112.3 **个Python程序132.3.1 编写脚本文件运行**个Python程序132.3.2 使用Jupyter Notebook编写和运行**个Python程序132.4 Python语法基础142.4.1 标识符142.4.2 关键字142.4.3 变量声明152.4.4 语句152.4.5 Python代码块162.4.6 模块162.5 数据类型与运算符182.5.1 数据类型182.5.2 运算符202.6 控制语句242.6.1 分支语句242.6.2 循环语句262.6.3 跳转语句282.7 序列292.7.1 索引操作 302.7.2 序列切片312.7.3 可变序列——列表322.7.4 不可变序列——元组332.7.5 列表推导式342.8 集合352.8.1 创建集合352.8.2 集合推导式362.9 字典362.9.1 创建字典372.9.2 字典推导式382.10 字符串类型382.10.1 字符串表示方式382.10.2 字符串格式化402.11 函数402.11.1 匿名函数与lambda表达式412.11.2 数据处理中的两个常用函数432.12 文件操作44文件读写452.13 异常处理482.13.1 捕获异常482.13.2 释放资源492.14 多线程52创建线程522.15 本章总结55第3章金融大数据的获取 3.1 金融大数据概述573.1.1 数据来源573.1.2 数据采集工具和技术583.2 网络爬虫583.2.1 网络爬虫原理583.2.2 网络爬虫的应用593.2.3 使用urllib爬取静态网页数据593.2.4 案例1:爬取纳斯达克股票数据603.3 解析数据623.3.1 使用BeautifulSoup库633.3.2 案例2:解析纳斯达克股票数据633.3.3 使用Selenium爬取动态网页数据673.3.4 案例3:爬取搜狐证券贵州茅台股票数据693.3.5 案例4:使用Selenium解析HTML数据713.4 使用API调用获取数据723.4.1 常见的金融数据API733.4.2 使用TushareAPI获取数据743.4.3 案例5:使用Tushare API获取贵州茅台股票数据743.5 使用ChatGPT辅助获取数据763.5.1 案例6:使用ChatGPT解释和理解数据格式763.5.2 案例7:使用ChatGPT提供数据处理示例代码773.5.3 案例8:使用ChatGPT帮助解决数据获取问题793.6 本章总结80第4章金融大数据基础库:NumPy 4.1 NumPy库824.1.1 为什么选择NumPy824.1.2 安装NumPy库834.2 创建数组834.2.1 创建一维数组834.2.2 指定数组数据类型844.2.3 创建一维数组更多方式854.2.4 使用arange函数854.2.5 等差数列与linspace函数864.2.6 等比数列与logspace函数884.3 二维数组 89创建二维数组894.4 创建二维数组更多方式904.4.1 使用ones函数904.4.2 使用zeros函数914.4.3 使用empty函数914.4.4 使用full函数924.4.5 使用identity函数934.4.6 使用eye函数944.5 数组的属性954.6 数组的轴954.7 三维数组964.8 访问数组964.8.1 索引访问964.8.2 切片访问984.8.3 花式索引1004.9 本章总结100第5章金融大数据分析库:Pandas 5.1 Pandas库介绍1025.1.1 为什么选择Pandas1025.1.2 安装Pandas库1035.2 Series数据结构1035.2.1 理解Series数据结构1035.2.2 创建Series对象1045.2.3 访问Series数据1065.2.4 通过下标访问Series数据1075.2.5 通过切片访问Series数据1075.3 DataFrame数据结构110创建DataFrame对象1105.4 访问DataFrame数据1135.4.1 访问DataFrame列1135.4.2 访问DataFrame行1145.4.3 切片访问1155.5 本章总结116第6章金融大数据的预处理与清洗 6.1 数据清洗和预处理1186.1.1 使用ChatGPT辅助数据清洗1186.1.2 案例1:使用ChatGPT辅助分析股票数据1196.1.3 案例2:处理股票数据缺失值问题1206.1.4 案例3:处理股票数据类型不一致问题1236.1.5 案例4:处理股票数据异常值问题1246.2 本章总结125第7章金融大数据的存储 7.1 使用MySQL数据库1277.1.1 MySQL数据库管理系统1277.1.2 安装MySQL8数据库1287.1.3 客户端登录服务器1307.1.4 图形界面客户端工具1307.1.5 安装PyMySQL库1357.1.6 访问数据库的一般流程1367.1.7 案例1:访问苹果股票数据1387.2 使用Pandas读写MySQL数据库1417.2.1 示例2:使用Panda从数据库读取股票数据1417.2.2 示例3:使用Pandas写入股票数据到数据库1437.3 使用Pandas读写Excel文件1447.3.1 示例4:使用Pandas从Excel文件读取股票数据1447.3.2 示例5:使用Pandas写入股票数据到Excel文件1457.4 使用Pandas读写CSV文件1467.4.1 案例6:从CSV文件读取货币供应量数据1477.4.2 示例7:使用Pandas写入股票数据到CSV文件1487.5 JSON数据交换格式1497.5.1 JSON文档结构1497.5.2 JSON数据编码1507.5.3 JSON数据解码1537.5.4 案例8:解码搜狐证券贵州茅台股票数据1547.6 本章总结156第8章金融大数据可视化基础库:Matplotlib8.1 金融大数据可视化库1588.2 金融大数据可视化方法和图表类型1588.3 使用Matplotlib绘制图表1598.3.1 安装Matplotlib1598.3.2 图表的基本构成要素1608.3.3 绘制折线图1608.3.4 绘制柱状图1618.3.5 绘制饼状图1628.3.6 绘制散点图1638.3.7 绘制子图表1648.3.8 案例1:绘制贵州茅台股票历史成交量折线图1678.3.9 案例2:绘制贵州茅台股票OHLC折线图1698.4 mplfinance库1708.4.1 K线图1708.4.2 绘制K线图1718.4.3 案例3:绘制贵州茅台股票K线图1718.5 绘制移动平均线图1728.5.1 案例4:绘制贵州茅台股票5日和10日移动平均线图1738.5.2 案例5:绘制K线图 移动平均线图1758.6 本章总结177第9章金融大数据可视化进阶库:Seaborn9.1 Seaborn库概述1799.1.1 使用Seaborn图表的主要优点1799.1.2 安装Seaborn库1799.1.3 设置Seaborn的样式1809.2 箱线图1819.3 小提琴图1829.4 关联线图1839.5 关联散点图1849.6 密度图1869.7 Dist图1879.8 线性回归图1889.9 热力图1899.10 本章总结191第10章金融大数据分析 10.1 ChatGPT辅助金融大数据分析19310.2 数据的统计分析方法19410.3 描述统计分析19410.3.1 在Pandas中常用的描述统计方法19510.3.2 案例1:使用描述统计方法分析贵州茅台股票数据19810.4 频数分析20310.4.1 案例2:分析信用卡交易金额的频数分布20410.4.2 案例3:分析贵州茅台股票交易量频数分布20510.5 相关性分析20610.5.1 案例4:股票行业相关性分析20710.5.2 案例5:使用ChatGPT辅助分析皮尔逊相关系数20810.6 时间序列分析20910.6.1 案例6:采用MA分析贵州茅台股票的价格走势21010.6.2 案例7:采用AR分析贵州茅台股票的价格走势21810.7 本章总结223第11章机器学习与金融大数据预测建模11.1 机器学习策略22511.1.1 机器学习策略分类22511.1.2 Python机器学习库22611.1.3 机器学习策略的实施过程22711.2 案例1:使用Scikit-learn分类策略预测苹果股票走势22811.3 案例2:使用Scikit-learn回归策略预测苹果股票走势23311.4 案例3:使用Keras深度学习库预测苹果股票走势24111.5 本章总结250第12章ChatGPT在金融大数据分析中的应用与优势12.1 ChatGPT在金融领域中的自动化客户服务与智能助理方面的应用25212.1.1 案例1:ChatGPT应用于金融领域中的智能问答和问题解决25212.1.2 案例2:ChatGPT应用于金融领域中的个性化建议和推荐25412.1.3 案例3:ChatGPT应用于金融领域中的自动化投资助理25412.2 ChatGPT在金融领域中的情感分析和舆情监测方面的应用25612.2.1 案例4:ChatGPT在金融市场情感分析中的应用25612.2.2 案例5:ChatGPT在舆情监测中的应用25712.3 ChatGPT在金融领域中的文档处理方面的应用25812.4 与ChatGPT对话的文本语言——Markdown25912.4.1 Markdown基本语法25912.4.2 使用Markdown工具 26212.4.3 案例6:利用ChatGPT撰写ABC银行年度财务报告26512.4.4 将Markdown格式文档转换为Word文档26712.4.5 将Markdown格式文档转换为PDF文档26812.4.6 案例7:利用ChatGPT生成ABC银行资产负债表26912.5 本章总结273第13章金融案例与实践 13.1 实践案例1:使用ARIMA模型预测USD/CNY汇率27513.1.1 案例背景27513.1.2 有关汇率的基本概念27513.1.3 收集数据27613.1.4 案例实现过程27713.2 实践案例2:基于深度学习的黄金期货价格预测28213.2.1 有关期货的基本概念28213.2.2 期货交易中的多头和空头策略及其风险管理28313.2.3 收集数据28313.2.4 案例实现过程28513.3 实践案例3:基于深度学习的比特币价格预测29113.3.1 数字货币相关的基本概念29213.3.2 收集数据29213.3.3 案例实现过程29313.4 本章总结302
栏目分类
- Alkimi 中文站
- PME中文网
你的位置:Alkimi 中文站 > PME中文网 >